关于一类完整逆半群*

朱 雯 何明星** 西华大学数学与计算机学院 成都 610039

摘要 引入了树半格, 完整逆半群, 齐次 Clifford 半群, Clifford 核等概念. 给出了树半格上的齐次 Clifford 半群的 一个结构定理, 证明了在同构意义下, 树半格上的齐次 Clifford 半群是且仅是树半格上完整逆半群的 Clifford 核.

关键词 完整逆半群 齐次 Clifford 半群 Clifford 核

从一个已知半群出发借助某种方法作扩张,从 而构造新的半群,这是半群理论的重要课题. Munn 方法就是从一个半格出发构造逆半群^[1] . 虽 然 Munn 方法对于逆半群的研究意义重大,但仍有 缺陷,一般来说。 由半格 E 得到的 M unn 半群 T 比 起一般的幂等元半格为 E 的逆半群 S 要 "瘦"得 多, 这是因为 T 的每一个 类的元素仅限于子半格 Ee 到 Ff 的同构,因此要比 S 的相对应的 素少. 从另一个角度来看更说明问题. 我们知道, Munn 半群 T 上的最大幂等元分离同余是平凡的, 因而它的核只是"干巴巴"的E本身.而一般的以 E 为幂等元半格的逆半群的最大幂等元分离同余的 核(称为 C-核)是一个以 E 为幂等元半格的 Clifford 半群. 正是因为这个 Clifford 半群使得 S 的每 一个 类比 T 的相应 类的元素多. 出于这样的事 实,使我们考虑到,为了得到半格 E 上的逆半群, 可以不从E 出发,而是从一个以E 为幂等元半格的 C liftord 半群 C 出发. 这样就提出一个问题: 对于 任意的 Clifford 半群 C 能不能构造一个逆半群 S使得: (i) S 是完整的: (ii) S 的 C-核和 C 同构 ?这里完整的定义将在本文中介绍.

在本文中,我们证明了: 当 C 是齐次的 Clifford 半群时,满足上述条件的逆半群是可以构造出来的. 由于这方面的工作还没有见到相关的研究报

道,所以我们工作是走第一步. 虽然我们的工作距离终点还很远, 但这个问题很重要也很有趣味, 所以我们想用自己的工作引起同行们的注意.

1 树半格

定义**11** 设 E 是半格²,称 E 是树半格(简称树),如果:(i)E 有最小元;(ii)对于任意 a, $b \in E$ 当 b < a 时,存在唯一的一组元素 $x_i \in E$ 使得 $b = x_0$, $a = x_n$, x_i 覆盖 x_{i-1} (i = 1, 2, ..., n).称 $b = x_0$, x_1 ,..., $x_n = a$ 为 b 到 a 的覆盖链.

引理**11** 设 E 是树, $a \in E (a \neq 0)$. 则存在唯一的元素 $b \in E$ 被 a 覆盖.

证 设 $0=x_0$, x_1 , …, $x_n=a$ 是 0 到 a 的覆盖链,则 x_{n-1} 被 a 覆盖. 若 $c \in E$ 被 a 覆盖,令 $0=y_0$, y_1 , …, $y_m=c$ 是 0 到 c 的覆盖链,则 $0=y_0$, y_1 , …, $y_m=c$, a 是 0 到 a 的覆盖链,由唯一性,可知 $c=x_{n-1}$.

定义**12** 设 E 是树, $a \in E(a \neq 0)$, $a_0 = a$. 则 a_1 是被 a 覆盖的唯一元素.若 $a_i \neq 0$,则记 $a_{i+1} = (a_i)_1$ (被 a_i 覆盖的唯一元素).

引理**12** 设 E 是树, $a \in E(a \neq 0)$. 那么(i)存在唯一的正整数 n 使 $a_n = 0$. 称 n 为 a 的高,记为 h(a),且令 h(0) = 0. (ii)若 h(a) = n,则 h(ai) = n = i. (iii)若 $b \le a$,则有 k 使 $b = a_k$. (iv)若 $b \ne a$,

²⁰⁰⁸⁻⁰⁷⁻²² 收稿, 2008-09-19 收修改稿

^{*} 国家自然科学基金资助项目(批准号: 60773035)

^{**} 通信作者, E-mail: wenzhu55@yahoa com. cn. he_mingxing64@yahoa com. cn. ?1994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

 $h(a) = h(b), ab = a_i, M ab = b_i.$

证(i)设 $0=x_0$, x_1 , \cdots , $x_n=a$ 是 0 到 a 的 覆盖链,则 $a_1=x_{n-1}$, $a_2=x_{n-2}$, \cdots , $a_{n-1}=x_1$, $a_n=x_0=0$. (ii)由(i)可知 $a_i=x_{n-i}$, 因为 $0=x_0$, x_1 , \cdots , $x_{n-i}=a_i$ 是 0 到 a_i 的覆盖链,因此 $a_i=x_0$ 。 (iii)因为 $a_i=x_0$ 。则有 a_i 的覆盖链。因此 $a_i=x_0$ 。 (iii)因为 $a_i=x_0$ 。则有 a_i 的覆盖链。因此 $a_i=x_0$ 。则有 $a_i=x_0$,则有 $a_i=x_$

定理 **1 3** 设 *E* 是树. 那么 (i) Ea 和 Eb 同构 当且仅当 h(a) = h(b),此时 Ea 到 Eb 的同构映射 只有一个,记为 (a, b); (ii) 若 $\alpha = (a, b)$, $\beta = (c, d)$,令 $b\alpha = b = c_i$,则 $\alpha\beta = (a_i, d_i)$.

证 (i) 由引理 1. 2 可知, $Ea = \{0 = a_n, a_{n-1}, \dots, a_1, a\}$ (n = h(a)), $Eb = \{0 = b_m, b_{m-1}, \dots, b_1, b\}$ (m = h(b)),若 Ea 和 Eb 同构,则 n = m,即 h(a) = h(b).反之,若 h(a) = h(b),令 $\alpha: a_i \rightarrow b_i$ ($i = 0, 1, \dots, n$),显然 α 是 Ea 到 Eb 的唯一同构。 (ii) 若 $\alpha = (a, b)$, $\beta = (c, d)$,则 $\alpha\beta = (e, f)$,其中 $e = (bc)\alpha^{-1}$, $f = (bc)\beta$,因为 $bc = b_i = c_j$,所以 $e = (bc)\alpha^{-1} = (b_i)\alpha^{-1} = a_i$, $f = (bc)\beta = (c_i)\beta = d_i$.

定义 **1 3** 设 *E* 是树. 那么(i) *E*0 的恒等自同构记为 0 (显然 0 是 T_E 的零元); (ii) 设 $\alpha = (a, b)$ $\in T_E$, 称 h(a) (=h(b)) 为 α 的高,记为 $h(\alpha)$.

定理 1 4 设 E 是树, α , $\beta \in T_E$. 若 $\alpha = (a, b)$, $\beta = (c, d)$,则 (i) α $\beta \rightleftharpoons a = c$; (ii) α $\beta \rightleftharpoons b = d$; (iii) α $\beta \rightleftharpoons \alpha = \beta$; (iv) α $\beta \rightleftharpoons h(\alpha) = h(\beta)$.

证 (i) 在逆半群 T_E 中, α $\beta \Leftrightarrow \alpha \alpha^{-1} = \beta \beta^{-1}$,因为 $\alpha = (a, b)$,所以 $\alpha \alpha^{-1}$ 是 Ea 的恒等自同构(记为 1_a)。同理, $\beta \beta^{-1} = 1_c$ 。因此 α $\beta \Leftrightarrow 1_a = 1_c \Leftrightarrow a = c$.
(ii) 因为 $\alpha^{-1} \alpha = 1_b$, $\beta^{-1} \beta = 1_d$,所以在 T_E 中 α $\beta \Leftrightarrow 1_b = 1_d \Leftrightarrow b = d$. (iii) α $\beta \Leftrightarrow \alpha$ β 且 α $\beta \Leftrightarrow a = c$ 且 $b = d \Leftrightarrow \alpha = \beta$. (iv) 设 α β , 则有 $\gamma \in T_E$ 使 α γ 且 γ β . $\varphi \gamma = (a, f)$,则 a = e, f = d. 因此 h(a) = h(e) = h(f) = h(d),故 $h(\alpha) = h(\beta)$. 反之,若 $h(\alpha) = h(\beta)$,则 $h(\alpha) = h(d)$,之 $\gamma = (a, d)$,则

α β且γ β, 因此 α β.

2 完整逆半群

若 E 是逆半群(Clifford 半群)S 的幂等元半格,则称 S 是 E 上逆半群(Clifford 半群)E3.

定义**21** E 上逆半群 S 称为完整的,如果有 S 上幂等元分离同余 ℓ 使 S ℓ ℓ ℓ E ℓ E ℓ

引理 **2 1** 在定义 2 1 中的同余 ρ 必是最大幂等元分离同余 $\mu^{[4]}$.

证 设 $a^{\mu}b$,则在商半群 S/ℓ 中 $(a^{\ell})^{\mu}(b^{\ell})$.因为 $S/\ell=T_{E}$ 是基本逆半群,所以 $a^{\ell}=b^{\ell}$,因此 $a^{\ell}b$.这就表明 $\mu\subseteq\ell$.因为 μ 是最大的,所以 $\ell=\mu$.

引理 2. 2 设 E 是有限的,若 S 上同余 ℓ 使 $S/\ell=T_E$,则 S 是完整的.

证 设 $e \in E$,则 e^{ρ} 是 T^{E} 的幂等元. 根据 Lallemet 引理 3 , T_{E} 的幂等元必是 E 的元素的象,因此存在 E 到 T_{E} 的幂等元半格 E_{1} 的满射. 因为 E 是有限集,且和 E_{1} 的元素个数相同,所以该映射是一一映射. 设 e, $f \in E$,若 $e^{\rho} = f^{\rho}$,则 e = f . 因此 ρ 是幂等元分离同余.

引理 2 3 设 $S \to E$ 上完整逆半群, $S/P = T_E$. 若 $R \to E$ 的 类, $RP = \{aP \mid a \in \mathbb{R}\}$ 是 T_E 的 类.

证 显然 R^{ϱ} 必在 T_{E} 的 类 R_{1} 中. 设 $a_{1} \in \mathbb{R}$,则有 $a \in S$ 使 $a^{\varrho} = a_{1}$. 令 $f \in E \cap R_{a}$,则在 T_{E} 中 (f^{ϱ}) (a^{ϱ}) . 令 $e \in E \cap R_{n}$,则 $e^{\varrho} \in \mathbb{R}$. 因而幂等元 e^{ϱ} 及 f^{ϱ} 同时在 R_{1} 中,因此 $e^{\varrho} = f^{\varrho}$. 因为 ℓ 是幂等元分离同余,故 e = f. 因为 f a,所以 e a,因此 $a \in \mathbb{R}$. 这就证明了 $R^{\varrho} = R_{1}$.

定理 2 4 设 $S \in E$ 上完整逆半群, $S/P = T_E$. 若 H,D 各是 S 的 类和 类,则 HP,DP 各是 T_E 的 类和 类.

3 逆半群的 Clifford 核

引理 3 1 设 S 是半格 E 上逆半群, $C_s = \{x \in S \mid (\forall e \in E) x e = ex\}$. 则 (i) $C_s = \ker^{\mu} = \{x \in S \mid (\exists e \in E) x \mu_e\}$; (ii) $C_s \in E$ 上 Clifford 半群.

证 结论(i)是已知的 $^{[2]}$.(ii)由于S是逆半群,所以S上同余的核必是逆子半群且包含E.当x $\in \mathbb{C}$ 时有ex=xe($\forall e \in E$),因此G 是 Clifford 半群.

Clifford 核 (简称为 C-核).

已知 Clifford 半群 C_s 是群的强半格,因此,对于每一个 $e \in E$ 对应子群 G_e ; 若 $e \geqslant f$,则有 G_e 到 G_f 的同态 \mathcal{P}_g ,记 $C_s = [E, G_e, \mathcal{P}_g]$.

定理 **3 2** 设 $S \in E$ 上完整逆半群. 那么(i) $G_e = H_e \cap C_s$;(ii)若 Ee 和 Ef 同构,则 G_e 和 G_f 同构.

证(i)子群 G_e 的单位元是 e,因为 e 所在 类 H_e 是 e 为单位元的最大子群,因而 G_e \subseteq H_e ,故 G_e \subseteq H_e \cap C_s . 设 $f \neq e$,则 H_e \cap H_f = Φ . 因此 G_e \subseteq H_e \cap C_s . (ii) 设 α 是 Ee 到 Ef 的同构,则 $\alpha\alpha^{-1}$ = I_e , α^{-1} α = I_f . 因此 I_e , I_f 在 I_E 的同一个 类中,根据定理 2 4, I_e 和 I_f 在 I_E 的同一个 类中,因此存在 I_E 和 I_E 和 I_E 的同构, I_E 中,以中,因此存在 I_E 和 I_E 的同构, I_E 和 I_E 的同构, I_E 和 I_E 的同构, I_E 和 I_E 别 I_E 和 I_E 别 I_E 和 I_E 别 I_E 和 I_E 和 I_E 别 I_E 和 I_E 和

引理 3 3 设 $S \in E$ 上完整逆半群, $a \in \mathbb{R} \cap L_f$, $\alpha \in Ee$ 到 Ef 的同构。若 $g \leq e$, $g \approx h$,则 ah $\in \mathbb{R} \cap L_h$.

证 设 $\varphi \in S$ 到 $S/P = T_E$ 的自然同态,因为 $a \in \mathbb{R} \cap L_f$,所以 $a \varphi \in \mathbb{R}_e \cap L_{1_f}$. 因此 $\alpha = a \varphi \in E_E$ 到 Ef 的同构. 因为 $g \leq e$,所以 $h = g \alpha \leq f$. 因此 $(fh)\alpha^{-1} = h\alpha^{-1} = g$, $(fh)1_h = h$. 因而 $(ah)\varphi = (a\varphi)(h\varphi) = \alpha 1_h$ 是 Eg 到 Eh 的同构,因此 $\alpha 1_h = R_{1_e} \cap L_{1_h}$. 根据定理 2 4, $ah \in \mathbb{R} \cap L_h$.

Clifford 半群 $G = [E, G_e, \mathcal{Q}_{ef}]$ 的结构同态 $\mathcal{Q}_{ef}(e)$ f) 将 G_e 的元素 x 对应 $x\mathcal{Q}_{ef} = xf$. 设 $a \in \mathbb{R} \cap L_f$, $a_1 = ah \in \mathbb{R}_g \cap L_h$ (引理 3 3),则 θ_a 是 G_e 到 G_f 的同构, θ_{a_1} 是 G_g 到 G_h 的同构,设 $x \in G_e$,因为 $g \leqslant e$,则 $x\mathcal{Q}_g = xg$,因而 $x(\mathcal{Q}_g \theta_{a_1}) = a_1^{-1} xga_1 = h^{-1}a^{-1} xgah$.由于 $xg \in G_g$,因而 $a^{-1} xga \in \mathbb{C}$ 。因为 $h^{-1} = h \in E$,故 $h^{-1} a^{-1} xgah = a^{-1} xgah$.又因为 $ah \in \mathbb{R}_g$,因而 gah = ah.因而 $x(\mathcal{Q}_g \theta_{a_1}) = a^{-1} xah = (x\theta_a)h = (x\theta_a)\mathcal{Q}_{fh}$.这就证明了 $\theta_a \mathcal{Q}_{fh} = \mathcal{Q}_g \theta_{a_1}$.

定理 **3 4** 设 *S* 是 *E* 上完整逆半群,*C_s*=[*E*,

Ef 的同构), $a_1 = ah$, θ_a : $x \rightarrow a^{-1} x a$ 是 G_e 到 G_f 的同构, $\theta_{a^{-1}}$: $y \rightarrow aya^{-1}$ 是 G_g 到 G_h 的同构,则有 $\theta_a \varphi_{fh} = \varphi_{gg} \theta_{a_h}$.

4 树 E 上齐次 Clifford 半群的构造

定义 4 1 设 E 是树, $C=[E, G_e, \varphi_{ef}]$ 是 E 上 Clifford 半群. 称 C 是齐次的,如果: (i) 若 Ee 和 Ef 同构,则 G_e 和 G_f 同构; (ii) 设 α 是 Ee 到 Ef 的同构, $g \leq e$, $h=g\alpha$,则存在 G_e 到 G_f 的同构 G_g 到 G_g 的同构 G_g 到 G_g 的同构 G_g 到 G_g 的同构 G_g 到 G_g 的同构 G_g 3 G_g 的同构 G_g 3 G_g 0 G_g

根据定理 3 4, 有以下结论.

定理 4.1 设 S 是树 E 上完整逆半群.则 C_s 是 E 上齐次 Clifford 半群.

定理 **4 2** 设 E 是树, $E_i = \{a \in E \mid h(a) = i\}$. 若对于每一个 E_i 有群 G_i ,当 \triangleright 0 时,有 G_i 到 G_{i-1} 的同态 φ_i ;记 $G = E_i \times G_i = \{(a,g) \mid a \in E_i, g \in G_i\}$, $C = \bigcup_{i \geq 0} C_i$, φ_i 是 G_i 的恒等自同构,当 $i \geq j$ 时,记 $\varphi_{ij} = \varphi_i \varphi_{i-1} \cdots \varphi_{j+1}$.则 C 在如下运算下是 E 上齐次 Clifford 半群:若 $x = (a,g) \in G$, $y = (b,h) \in G$, $ab \in E_k$,则定义 $xy = (ab, (g\varphi_{ik})(h\varphi_{jk}))$.

证 (1) 设 $x = (a, g) \in C$, $y = (b, h) \in C_j$, $z = (c, m) \in C_k$, 若 $ab \in E_s$, $bc \in E_t$, $abc \in E_p$, 则 $xy = (ab, (g\varphi_{is})(h\varphi_{ji}))$, $yz = (bc, (h\varphi_{jt})(m\varphi_{kt}))$, 于是有

 $(xy)_z = (abc, ((g\varphi_{is})(h\varphi_{js}))\varphi_{sp}(m\varphi_{lp})),$

 $x(yz) = (abc, (g\varphi_{ip})((h\varphi_{jt})(m\varphi_{kt}))\varphi_{p}),$

因为 $\varphi_{\delta}\varphi_{p} = \varphi_{p}$, $\varphi_{\delta}\varphi_{p} = \varphi_{jp}$, $\varphi_{l}\varphi_{lp} = \varphi_{jp}$, $\varphi_{kl}\varphi_{p} = \varphi_{pp}$, $\phi_{kl}\varphi_{p} = \varphi_{pp}$,

(2) 设 $a \in E_i$, 令 $G_a = \{(a,g) | g \in G_i\}$. 因为 $(a,g)(a,h) = (a,(g\varphi_i)(h\varphi_i)) = (a,gh)$, 以及 $(a,g)(a,g^{-1}) = (a,e_i) = (a,g^{-1})(a,g)$, 所以 G_a 是以 (a,e_i) 为单位元的群,其中 e_i 是 G_i 的单位元. 设 $a,b\in E,a\geqslant b$, 则 $a\in E_i,b\in E_j,i\geqslant j$. 令 φ_a 将 G_a 的元素 (a,g) 对应 G_b 的元素 $(b,g\varphi_i)$, 显然 φ_{ab} 是同态. φ_{aa} 是 G_a 的恒等自同构. 设 $a\geqslant b\geqslant c$, $(a\in E_i,b\in E_j,c\in E_k)$, 则 $(a,g)(\varphi_a,\varphi_k) = (a,g(\varphi_i,\varphi_i)) = (a,g(\varphi_i,\varphi_i)) = (a,g(\varphi_i,\varphi_i))$. 因此 G_a 因此 G_a 包含 G_a 的强半格, G_a $G_$

 G_e , \P_g] 4-2前 $a \in \mathbb{R}$ A_c A_c A

的同构, $(b,g) \rightarrow g$ 是 G_b 到 G 的同构,所以 $(a,g) \rightarrow (b,g)$ 是 G_a 到 G_b 的同构,记为 θ_{ab} . 其次,设 e,f $\in E_i$, α 是 E_e 到 E_f 的同构, $g \leq e$, $h = g \alpha \leq f$. 设 $g,h \in E_j$,需要证明同构 θ_{ef} : $G_e \rightarrow G_f$ 及 θ_{gh} : $G_g \rightarrow G_h$ 以及结构同态 θ_{eg} : $G_e \rightarrow G_g$ 及 φ_{fh} : $G_f \rightarrow G_h$ 满足 $\varphi_{eg}\theta_{gh} = \theta_{ef}\varphi_{fh}$. 设 $(e,x) \in G_e$,则 $(e,x) \varphi_{eg}\theta_{gh} = (g,x\varphi_{ij})\theta_{gh} = (h,x\varphi_{ij})$, $(e,x)\varphi_{eh}\theta_{fh} = (f,x)\varphi_{fh} = (h,x\varphi_{ij})$. 因此 $\varphi_{eg}\theta_{gh} = \theta_{ef}\varphi_{fh}$. 因此 C 是 E 上齐次 C liftord 半群.

定义 $\mathbf{4}$ 2 由定理 $\mathbf{4}$ 2 所得的半群 C 记为 [E, G, \mathcal{P}_{i}].

定理 4. 3 设 $C=[E, G_e, \varphi_{ef}]$ 是 E 上齐次 C lifford 半群,则 C 必同构于 $[E, G_i, \varphi_i]$.

证 设 $E_i = \{a \in E \mid h(a) = i\}$,若 $e, f \in E_i$,则由定理 1 3 知 E_e 和 E_f 同构。根据齐次条件,有 G_e 到 G_f 的同构 θ_{ef} 使得 $\theta_e \varphi_{fh} = \varphi_{eg} \varphi_{gh}$,其中 $g \leq e$ h = ga ($\alpha \in E_e$ 到 E_f 的同构), θ_{gh} 是 G_g 到 G_h 的同构, φ_{eg} : $G_e \rightarrow G_g$ 及 φ_{fh} : $G_f \rightarrow G_h$ 是 C 的结构同态。由于当 $e, f \in E_i$ 时 G_e 和 G_f 都同构,因此 E_i 确定一个群 G_i . 设 θ_e : $G_e \rightarrow G_g$ 是同构。任取 $e \in E_i$ ($i \triangleright 0$),g 是被 e 覆盖的元素,因此 $g \leq e, g \in E_{i-1}$, θ_g : $G_g \rightarrow G_{i-1}$ 是同构。令 $\varphi_i = \theta_e^{-1}\varphi_{eg}\theta_g$,则 φ_i 是 G_i 到 G_{i-1} 的同态。以下证明 φ_i 和 e 的选择无关。设 $f \in E_i$, $h \in f, h \in E_{i-1}$,则 $\theta_f = \theta_g^{-1}\theta_e$ 是 G_f 到 G_i 的同构, $\theta_h = \theta_g^{-1}\theta_g$ 是 G_h 到 G_{i-1} 的同构。因此 $\theta_f^{-1}\varphi_{fh}\theta_h = \theta_e^{-1}\varphi_{eg}\theta_{gh}\theta_{gh}^{-1}\theta_g = \theta_e^{-1}\varphi_{eg}\theta_g$. 这就证明了 φ_i : $G_i \rightarrow G_{i-1}$ 和 e 的选择无关。

根据 E, G_i , \mathfrak{P}_i 可由定理 4 2 得到 E 上齐次 C liftord 半群 $C=[E, G_i, \mathfrak{P}_i]$, 余下的工作是证明 C 和 C 同构.

在 C 中,当 i > j 时, $\varphi_{ij} = \varphi_i \varphi_{i-1} \dots \varphi_{j+1}$,先证明:若 $e \in E_i$, $h \in E_j$, $(h \le e)$,则 $\theta_e \varphi_j = \varphi_{eh} \theta_h$.为此设 $h = e_{i-k}$,…, e_1 , $e_0 = e$ 是 h 到 e 的覆盖链,则 $\varphi_i = \theta_e^{-1} \varphi_{a e_1} \theta_{e_1}$, $\varphi_{i-1} = \theta_{e_1}^{-1} \varphi_{e_1, e_2} \theta_{e_2}$,…,故 $\varphi_{ij} = \theta_e^{-1} (\varphi_{a e_1} \varphi_{e_1, e_2} \dots) \theta_h^{-1} = \theta_e^{-1} \varphi_{eh} \theta_h$,因此 $\theta_e \varphi_{ij} = \varphi_{eh} \theta_h$.

设 $e \in E_i$,根据 G_e 到 G_i 的同构 θ_e ,于是得到 C 到 C 的一一映射 φ_e 、 $x \to (e, x\theta_e)$ ($x \in G_e$).设 $x \in G_e$, $y \in G_f$, $e \in E_i$, $f \in E_j$, h = ef, $h \in E_k$. 因为 $xy = (x\varphi_h)(y\varphi_{fh}) \in G_h$,所以 $(xy)\varphi = (h, (x\varphi_h)(y\varphi_{fh})) = (h, (x\varphi_h\theta_h)(y\varphi_{fh}\theta_h))$,另一方面,因为

 $x \varphi \rightarrow (e, x \theta_e), y \varphi \rightarrow (f, y \theta_f),$ 因此 $(x \varphi)(y \varphi) = (e, x \theta_e)(f, y \theta_f) = (h, (x \theta_e) \varphi_k (y \theta_f) \varphi_{jk}).$ 由于 $\theta_e \varphi_k = \varphi_{eh} \theta_h, \theta_f \varphi_{jk} = \varphi_{fh} \theta_h,$ 所以 $(xy) \varphi = (x \varphi)(y \varphi).$ 因而 φ 是同构.

5 树 E 上齐次 Clifford 半群扩张成 E 上完整 逆半群

设 E 是树, $C=[E, G_i, \varphi_i]$ 是 E 上齐次 Clifford 半群, $E_i=\{a\in E\mid h(a)=i\}$.

令 $D_i = \{(a, g, b) | a, b \in E_i, g \in G_i\}, S = \bigcup_{i \geq 0} D_i.$ 在 S 中规定运算如下:设 $x = (a, g, b) \in D_i, y = (c, h, d) \in D_j, 令 xy = e, u, f), 其中 <math>(e, f) = (a, b)(c, d)$ (在 T_E 中运算), $u = (g^{\phi_E})(h^{\phi_{ji}}), t = h(e).$

(1) 验证结合律成立. 设 $x = (a_1, g_1, b_1) \in D_i$, $y = (a_2, g_2, b_2) \in D_j$, $z = (a_3, g_3, b_3) \in D_k$. 注意到各元素的第一个,第三个分量的运算是在 T_E 中进行的,因此结合律成立. 因此只须验证中间项的运算适合结合律. 如果在 T_E 中 $(a_1, b_1)(a_2, b_2) = (c, d)$, $(a_2, b_2)(a_3, b_3) = (e, f)$, $(c, d)(a_3, b_3) = (u, v)$, 则 $(a_1, b_1)(e, f) = (u, v)$. xy 的中间项是 $g = (g_1 \varphi_i)(g_2 \varphi_{ji})$, 其中 t = h(c). 设 s = h(u), 则 (xy)z 的中间项 $\overline{g} = (g \varphi_s)(g_3 \varphi_{ks}) = ((g_1 \varphi_i)(g_2 \varphi_{ji})) \varphi_{ls}(g_3 \varphi_{ks}) = (g_1 \varphi_i)(g_2 \varphi_{ji})(g_3 \varphi_{ks})$. 另一方面,yz 的中间项是: $h = (g_1 \varphi_i)(g_2 \varphi_{ji})(g_3 \varphi_{ks})$. 因而 x(yz) 的中间项是: $h = (g_1 \varphi_s)(g_2 \varphi_{js})(g_3 \varphi_{ks})$. 因为 $\overline{g} = h$,因此结合律成立. 因而 S 是半群.

(2) 设 $x = (a, g, b) \in D_i$, 令 $y = (b, g^{-1}, a)$, 则 xyx = (a, g, b) = x, 故 x 是正则元,因而 S 是正则半群.

(3) 设 $x = (a, g, b) \in D_i$, 若 $x^2 = x$, 设 $x^2 = (c, (g^{\varphi_{il}}), (g^{\varphi_{il}}), d)$, 其中 t = h(c), 因而 a = c, b = d. 因为 h(c) = h(ab), 因而 $a \le b$. 又因为 h(d) = h(ab), 故 $b \le a$, 因此 a = b. 此时 t = i, 因而 $g^2 = g$, 故 $g = e^i$. 另一方面, $(a, e_i, a)(a \in E_i)$ 显然是幂等元,故 S 的幂等元集, $E = \{(a, e_i, a)|a \in E_i\}$. 下面证明映射 $(a, e_i, a) \rightarrow a$ 是 E 到 E 上的同构映射. 设 $a \in E_i$, $b \in E_j$, 则在 T_E 中(a, a)(b, b) = (ab, ab), 设 $ab \in E_i$, 则 $(a, e_i, a)(b, e_j, b) = (ab, (e_i \varphi_{ii}), ab) = (ab, e_i, ab)$. 因此 E 和 E 同构。故 E

是半格,因而S是逆半群.

(4) 设 $x = (a, g, b) \in S$, 令 $x^{\varphi} = (a, b)$, 不难看出 $\varphi \in S$ 到 T_E 的同态满射. 对于 S 的幂等元 (a, e_i, a) 和 (b, e_j, b) , 当 $(a, e_i, a)^{\varphi} = (b, e_j, b)^{\varphi}$, 必有 a = b. 因而同态核 $\ell = Ker^{\varphi}$ 是幂等元分离同余,因而 $S \in E$ 上完整逆半群.

(5) 设 $x = (a, g, b) \in C_s$,则对任意幂等元 $(c, e_j, c)(c \in E_j)$ 都有 $(a, g, b)(c, e_j, c) = (c, e_j, c)$ (a, g, b),因而在 T_E 中有 (a, b)(c, c) = (c, c) (a, b).取 c = b,则 (a, b)(b, b) = (b, b)(a, b).因而 (a, b) = (e, f),这里 $e \in b$,因而 $a \in b$. 再取 c = a,可得 $b \in a$,因而 a = b. 反之,设 x = (a, g, a) $(a \in E_i, g \in G_i)$,则必有 $(a, g, a)(c, e_j, c) = (c, e_j, c)(a, g, a)$,故 $x \in G$. 因而证明了 $C_s = \{(a, g, a) \mid a \in E_i, g \in G_i, i \geqslant 0\}$.对于每一个 $a \in E(h(a) = i)$, C_s 的子半群 $\{(a, g, a) \mid g \in G_i\}$ 和 G_i 同构。因而 C_s 和 C 有一一对应的关系。根据 C_s 和 C 的运算规则可知 C_s 和 C 同构。因此证明了下述定理。

定理 5.1 设 C 是树 E 上齐次 Clifford 半群,则必有 E 上完整逆半群 S 使得 G 和 G 同构.

例 设 $E = \{0, e, f\}$ 是半格,其中 0 是零元,ef = 0. 由 E 得到的 Munn 半群 T 有两个 类:零 类 $\{0\}$,非零 类= $\{\alpha_{ee}, \alpha_{ef}, \alpha_{fe}, \alpha_{ff}\}$,其中 α_{ij} 表示子半格 $\{0, i\}$ 到 $\{0, j\}$ 的唯一同构. T 共有

5 个元素. 又设 C 是由群 G_0 , G_e , G_f 组成的 C lifford 半群, C 的幂等元半格仍是 E, 群 G_e 和 G_f 都 和一个群 G 同构. 根据 C lifford 半群 C 由本文得到 的逆半群有两个 类. 零 类 $H_0 = \{(0, x, 0) | x \in G_0\}$ 和 G_0 同构. 非零 类有 A 个 类. H_{ee} , H_{ef} , H_{ff} , 其中 $H_{ij} = \{(i, g, j) | g \in G\}$, H_{ee} , H_{ff} 和 G_e , G_f 同构. 逆半群 S 的 C-核和 C 同构. 从这个简单的例子可以看出,借助半格 E 上的一个 C lifford 半群的扩张而得到的逆半群比起 E 上的 M unn 半群内容丰富得多.

参 考 文 献

- 1 Munn WD. Fundamental inverse semigroups. Quarterly Journal of Math Oxford, 1970, 21(2); 157-170
- 2 Howie JM. Fundamentals of Semigroups Theory, Ox ford; Clarend on Press, 1995
- 3 Petrich M. Inverse Semigroups. New York: John Wiley, 1984
- 4 Jones PR, Margolis SW, Meakin J, et al. Free product of inverse semigroups II. Glasgow Math Journal, 1991, 33: 373—387
- 5 Lallement G. Semigroups and Combinatorial Applications. New York; John Wiley & Sons, 1979
- 6 Deko V. HNN extensions of semigroups. Semigroups Forum, 1994, 49: 83-87
- 7 Lips comb SL. Centralizers in symmetric inverse semigroups; Structure and order. Semigroups Forum, 1992, 44; 347-355